If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20=2t+6t^2
We move all terms to the left:
20-(2t+6t^2)=0
We get rid of parentheses
-6t^2-2t+20=0
a = -6; b = -2; c = +20;
Δ = b2-4ac
Δ = -22-4·(-6)·20
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-22}{2*-6}=\frac{-20}{-12} =1+2/3 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+22}{2*-6}=\frac{24}{-12} =-2 $
| 6(u+6)=-7u-16 | | -7(-2k-6)+5k=-10+6k | | (Z+4)+16=y | | 169x^2+28x+2=0 | | 10x(x+4)=0 | | -4(u+1)=-9u-49 | | a/5+3=23 | | (X-4)(x-10)=35 | | 12=2x-3/x-4 | | 25y=+15y+75 | | 1/16+1/32x=-6 | | -8(7+x)=113 | | 3/8p/3=7.2 | | -1+5(6v+1)=64 | | 7x2+12x+-16=0 | | 6t^2+3,6t=0 | | -7(b+3)+5b=b-39 | | -4u-22=-6(u+6) | | X-4*x-10=35 | | 5y+34=-2(7y+1) | | y=-8-7(-1) | | -5-6(1-6b)=61 | | 4z=-48 | | 2x^2−5x−3=0 | | 81-r=5 | | 17x+5=12+10 | | 2x2−5x−3=0 | | 0.2x+x=14280 | | 1/2(k+5)=7 | | (g+6)(4g–1)=0 | | x+3.4=30.6 | | t2+-8t+-5=0 |